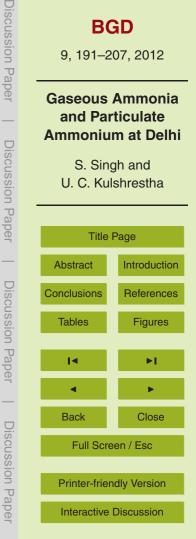
Biogeosciences Discuss., 9, 191–207, 2012 www.biogeosciences-discuss.net/9/191/2012/ doi:10.5194/bgd-9-191-2012 © Author(s) 2012. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Abundance and distribution of gaseous ammonia and particulate ammonium at Delhi (India)

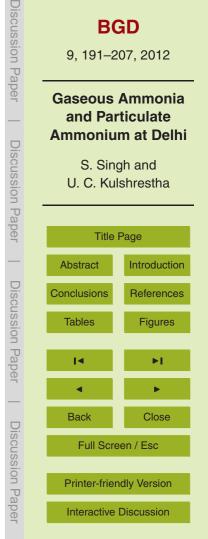

S. Singh and U. C. Kulshrestha

School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067 India

Received: 30 September 2011 – Accepted: 13 December 2011 – Published: 5 January 2012

Correspondence to: U. C. Kulshrestha (umeshkulshrestha@gmail.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.



Abstract

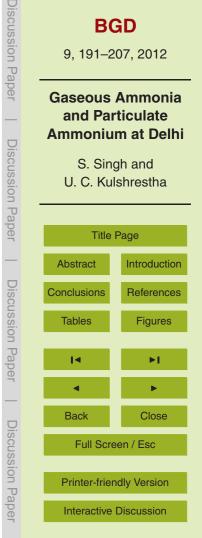
This study reports abundance and distribution of gaseous NH_3 and particulate NH_4^+ at Delhi. Gaseous NH_3 and particulate NH_4^+ concentrations were measured during pre monsoon, monsoon and postmonsoon seasons of the years 2010 and 2011. Average concentrations of gaseous NH₃ during premonsoon, monsoon and post mon-5 soon seasons were recorded as 26.4, 33.2 and $32.5 \,\mu g \,m^{-3}$, respectively. Gaseous NH₃ concentrations were the highest during monsoon due to decay and decomposition of plants and other biogenic material under wet conditions which emit NH₃. The results showed that particulate NH_4^+ was always lower than the gaseous NH_3 during all the seasons. The concentrations of particulate NH_4^+ were recorded as 11.6, 22.9 10 and $8.5 \,\mu g \,m^{-3}$ during premonsoon, monsoon and postmonsoon seasons, respectively. The percent fraction of particulate NH_4^+ was noticed highest during monsoon season due to increased humidity levels. On anaverage, 33.3% of total N-NH, was present as particulate NH_4^+ . Higher concentrations of NH_3 noticed during night time may be due to stable atmospheric conditions. Study highlighted that as compared to rural sites, 15 urban sites showed higher concentrations of gaseous NH₃ in India which may be due to higher population density, human activities and poor sanitation arrangements.

1 Introduction

Recently, atmospheric research has been focused upon nitrogen cycle in order to un derstand the role of nitrogen in the atmosphere, ocean and terrestrial ecosystems. Reactive nitrogen plays an important role in the atmosphere. Ammonia and ammonium (NH_x) are important reactive nitrogen species in the atmosphere. Atmospheric ammonia has become an environmental concern because of two main reasons- firstly, because of its neutralizing nature and secondly due to ecological consequences of its deposition on sensitive ecosystem causing eutrophication (Sutton et al., 1998, 2009).

rapidly with H_2SO_4 , HNO_3 . In spite of neutralizing effect, its deposition leads to acidification of the soil similar to the acidic effect of acids of SO_2 and NO_x (Jongebreur and Voorburg, 1992). Neutralization results in submicron sized NH_4 salts i.e. $(NH_4)_2SO_4$, NH_4HSO_4 and NH_4NO_3 etc. which play important role in radiative forcing. Deposition

- of NH_x from the atmosphere provides an excess N input to the ecosystem. This may also affect NH₃/NH₄⁺ ratios in the atmosphere. Sources of atmospheric NH₃ vary from region to region, Europe being the highest emitter followed by Indian subcontinent, and China. Major sources of atmospheric NH₃ include domestic animals, biomass burning, oceans, human population and pets, use of synthetic N fertilizers, crops, soils under
 natural vegetation. Out of total global NH₃ emissions, about 50 % is contributed from Asia (Bouwman et al., 1997). Other environmental sources of ammonia include indus
 - trial emissions and coal gasification etc.


But in India reactive nitrogen measurements have not been attempted extensively. This study has been carried out to measure NH_3 and NH_4^+ concentration at a urban site

¹⁵ in Delhi. In this study, attempt has also been made to quantify particulate and gaseous fractions of ammonia.

2 Methodology

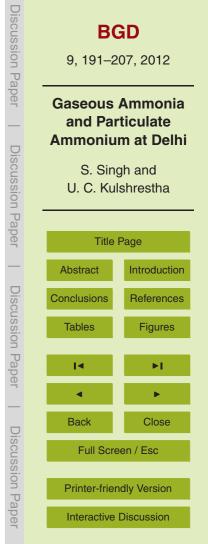
2.1 Sampling site

Sampling was carried out in Delhi. Sampling site was located at the building of School
of Environmental Science (SES), Jawaharlal Nehru University, and New Delhi. JNU campus lies in extreme South of Delhi, (latitude 28°31′30″–28°33′30″ N and longitude: 77°9′0″–77°11′0″ E) having mini forest area in its surroundings. The campus is located away from any industrial activities. The nearest two busy roads run north-south, 1 km east and 1 km west to the site, respectively. The traffic density of these roads is of the order of 10⁶ vehicles per day. In JNU campus, no major air pollution sources exist except vehicles like cars and bikes used by the students, faculty, visitors and the kitchens

of various cafeteria existing in different hostels and buildings. It is likely that suspended particulate matter contamination may occur from the construction work going on near School of Environmental Science. Flying planes also pass through southerly to the site for landing at IGI airport which is around 5 km away in the west from the sampling site. Figure 1 shows the location of sampling site.

2.2 Sample collection

5


25

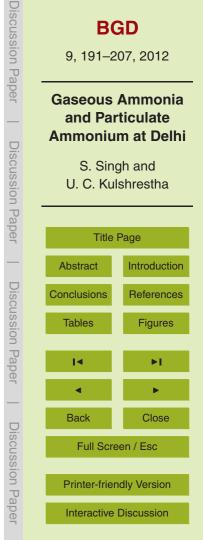
Gaseous NH₃ and aerosol samples were collected using a low volume pump (flow rate = 1 LPM). Samples were collected between April 2010 and July 2011. In the months of April 2010 and November 2010, NH₃ was collected by passing air through 25 mM H₂SO₄ (20 ml) in a standard impinger for 5 h. The particulate NH₄⁺ was collected on Whatman 41 cellulose filters (dia = 47 mm) which was placed upstream of the impinger. On an average, the collection efficiency of impinger technique for NH₃ was estimated as 83 %. In total, 91 samples of gaseous NH₃ and 72 samples of particulate NH₄⁺ were collected. In day time, sampling was performed between 8 a.m. and 1 p.m.

- while in the night time, between 6 p.m. and 11 p.m. Each aerosol sample represented the duration of two gaseous NH₃ samples collected during day and night time. In order to collect samples with better efficiency, during May 2011–July 2011, gaseous samples were collected using mist chamber instead of impinger at similar flow rate. This technique has been found more useful for NH₃ collection (efficiency > 99 %). Particulate
 NH⁴₄ was extracted immediately by shaking with deionized water (10 ml) for 30 min in
- a ultrasonic bath.

2.2.1 Sampling train setup

Sampling unit consisted of two standard impingers, one pump, flow meter, connecting tubes (Fig. 2). Filter holder was exposed outside in air for the collection of aerosols. Impinger No. 2 was used to find out the efficiency of collection.

2.3 Analysis


Samples were analyzed immediately after the collection. Both gaseous NH_3 and particulate NH_4^+ were determined colorimetrically with the help of UV-Vis spectrophotometer (Perkin Elmer, USA) using Indophenol blue method. In this method, a blue indophenols

⁵ dye is formed in the sodium pentacyanonitrosylooferrete catalyzed phenol-hypochlorite reaction with NH₃ in alkaline solution. The colour intensity is directly proportional to the NH₄⁺ present. The intensity of resultant NH₄⁺ complex was determined at 630 nm. It is worth mentioning here that other common gaseous pollutants such as SO₂, O₃, NO₂ at their normal atmospheric levels do not interfere in this method. However, other reduced
 N compound such as amines have cross sensitivity during colour development.

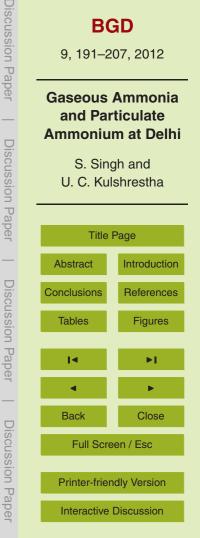
3 Results and discussion

3.1 Average variation of NH_3 and NH_4^+

Figure 3 shows the average concentrations and standard deviation of gaseous NH₃ and particulate NH_4^+ . Gaseous NH_3 varied from 9.8 to 63.8 μ g m⁻³ with an average of 29.4 μ g m⁻³. Particulate NH₄⁺ varied from 1.4 to 39.4 μ g m⁻³ with an average of 15 15.56 μ g m⁻³. Values of gaseous NH₃ in the similar order of magnitude have been reported two decades back by Kapoor et al. (1992) at Delhi (32.6 µg m⁻³) and Zutshi et al. (1970) at Mumbai ($35 \mu g m^{-3}$). Both NH₃ and NH₄⁺ varied covering large range of concentration which can be attributed to the various activities taking place in the surroundings, vegetation cover, land use patterns and meteorological factors. The 20 concentration of NH₃ depends on mainly source strength, atmospheric chemistry and temperature and humidity etc. As compared to NH₄⁺, higher NH₃ concentrations indicate an unique feature of atmospheric environment at Indian sites (Kulshrestha et al., 2009; Singh et al., 2001) which may be due to large contribution from NH₃ sources and relatively slow scavenging and NH_4^+ conversion processes. 25

3.2 Comparison of gaseous NH₃ concentration with other studies

Table 1 gives comparison of NH_3 reported by various workers at different sites worldwide. Interestingly, there are sufficient data available for NH_4^+ in rain water at remote rural, urban, semiurban and marine sites world wide (Lenhard and Gravenhorst, 1980;


- Likens et al., 1987; Galloway et al., 1987; Galloway, 1988; Khemani et al., 1989; Possanzini et al., 1988; Vincent, 1995; Tuncel and Unger, 1996; Parashar et al., 1996; Khare et al., 1996; Kulshrestha et al., 2005; Satyanarayana et al., 2010). But very few studies report NH₃ and NH₄⁺ in air (Table 1). Comparison shows that at most Indian sites, gaseous NH₃ concentrations are reported higher than at other sites. Within
- India, urban sites show higher gaseous NH₃ than that of rural sites. Higher concentration at urban sites may be due to increased population density, activities and poor sanitation arrangements. Another possible reason of higher gaseous NH₃ in India is due to strong source contribution and inefficient wet deposition. In addition, alkaline atmospheric conditions due to soil-derived particles do not encourage NH₃ (an alkaline gas) to get adsorbed onto the particles in air. Figure 4 shows how alkaline soil dust is
 - responsible for higher NH₃ concentrations in India.

3.3 Diurnal variation

20

Figure 5 shows the variation of gaseous ammonia in day and night. It is very clear that the night time concentrations are higher than day time. But patterns of NH_3 variation during day and night time are similar indicating higher NH_3 results in higher NH_4^+ and vice versa.

The daytime concentrations varied from 16.6 to 44.3 μg m⁻³ with an average value of 28.9 μg m⁻³ whereas the night time concentrations varied from 36.5 to 50.8 μg m⁻³ with an average value of 41.07 μg m⁻³. The high NH₃ concentrations during night time are probably due to stable atmospheric conditions. Burkhardt et al. (1998) have also reported higher concentrations of NH₃ during night time due to stable atmospheric conditions which results in to trapping of gaseous NH₃ near ground level. Similar

observations have been reported by Cadle et al. (1982) and Singh et al. (2001).

3.4 Variation during pre monsoon, monsoon and post monsoon

Figure 6 shows that the gaseous NH₃ concentrations are the highest during monsoon (July–September), a period of higher rainfall whereas it is observed to be the lowest
in the samples collected during pre monsoon. The average concentration of gaseous NH₃ during pre monsoon (March–June) was 26.47 µg m⁻³ whereas in monsoon period it was on an average 33.15 µg m⁻³. In post monsoon (October/November), the average value of gaseous NH₃ was 32.5 µg m⁻³. The highest concentration of NH₃ during monsoon season may be due to decay and decomposition of plants and other biogenic material under wet conditions which emit NH₃. In addition, seasonality in agricultural source activity like growing season and timing of manure application to fields can also influence the seasonal concentration of NH₃. However, this influence may be more effective in rural areas as compared to the present site.

3.5 Estimation of percent fraction of gaseous and particulate ammonia

¹⁵ Based on average values of gaseous ammonia and particulate ammonia, percentage fraction was calculated for N-NH₃ and N-NH₄⁺ as follows-

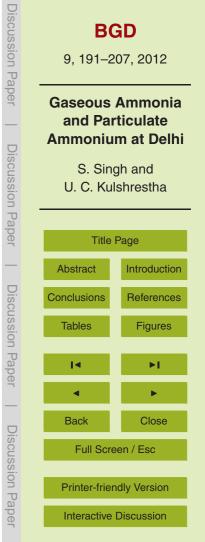
 $\% \text{ N-NH}_{4}^{+} \text{ fraction} = \frac{\text{N-NH}_{4}^{+} (\text{Aerosol}) \cdot 100 \%}{\text{N-NH}_{4}^{+} (\text{Aerosol}) + \text{N-NH}_{3} (\text{Ammonia})}$ (1)

The results show that particulate ammonia was always lower than the gaseous ammonia in all the seasons. The percent fraction of particulate N-NH₄⁺ was 33.3 % of total N (N-NH₄⁺ + N-NH₃). The percent fraction of particulate ammonia was noticed highest during monsoon season followed by pre monsoon and post monsoon. The highest N-NH₄⁺ during monsoon may be due to higher relative humidity which results in faster NH₃-NH₄⁺ conversion.

4 Summary

Seasonal variation data showed that gaseous NH_3 concentrations were the highest during monsoon period which might be due to decay and decomposition of plants and other biogenic material under wet conditions which emit NH_3 . It might also be due

to seasonality in agriculture sources and manure application which might have higher influence at rural site as compared to the present urban site. It was noticed that particulate NH₄⁺ was always lower than the gaseous NH₃ in all the seasons. The percent fraction of particulate N-NH₄⁺ was noticed highest during monsoon season due to increased humidity levels. Gaseous NH₃ levels were noticed higher during night time than day time which might be due to higher atmospheric stability during night time.

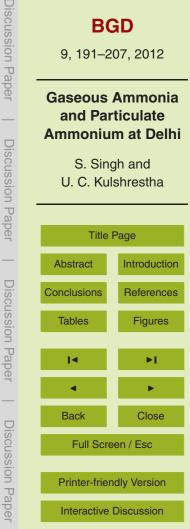

Acknowledgement. Authors are thankful to DST and JNU for providing financial assistance through PURSE CBF. Help of CSIR is also acknowledged for awarding Junior research fellowship to Saumya Singh.

References

- Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., van der Hoek, K. W., Olivier, J. G. J.: A global high-resolution emission inventory for ammonia, Global Biogeochem. Cy., 11, 561–587, 1997.
 - Burkhardt, J., Sutton, M. A., Milford, C., Storeton-West, R. L., and Fowler, D.: Ammonia concentrations at a site in Southern Scotland from 2 yr of continuous measurements, Atmos.

²⁰ Environ., 32, 325–331, 1998.

- Cadle, S. H., Countessand, R. J., and Kelley, N. A.: Nitric acid and ammonia in urban and rural locations, Atmos. Environ., 16, 2501–2506, 1982.
- Galloway, J. N., Zhao, D. W., Xiong, J., and Likens, G. E.: Acid rain: China, US and a remote area, Science, 230, 1559–1562, 1987.
- Galloway, J. N.: Effects of acid deposition on tropical aquatic ecosystems, in: Acidification in Tropical Countries, edited by: Rodhe, H. and Herrera, R., SCOPE 36, Wiley, New York, 141–166, 1988.



- Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Rantica, E., Ancora, M. P., Hu, M., and Zhu, T.: Occurrence of gas phase ammonia in the area of Beijing (China), Atmos. Chem. Phys., 10, 9487–9503, doi:10.5194/acp-10-9487-2010, 2010.
- Jougebreur, A. A. and Voorburg, J. H.: The role of ammonia in acidification. Perpectives for the prevention and reductions of emissions from livestock operarations, Stud. Environ. Sci., 50, 5 55-64, 1992.
 - Kapoor, R. K., Singh, G., and Tiwari, S.: Ammonia concentration vis-à-vis meteorological conditions at Delhi, India, Atmos. Res., 28, 1-9, 1992.
 - Khare, P., Kapoor, S., Kulshrestha, U. C., Saxena, A., Kumar, N. K., Maharaj Kumari, M., and
- Srivastava, S. S.: Variation in ionic composition of precipitation collected by sequential sam-10 pling, Environ. Tech., 17, 637–642, 1996.
 - Khemani, L. T., Momin, G. A., Naik, M. S., Rao, P. S. P., Safai, P. D., and Murty, A. S. R.: Influence of alkaline particulate on pH of cloud and rain water in India, Atmos. Environ., 21, 1137-1145, 1987.
- Khemani, L. T., Momin, G. A., Naik, M. S., Rao, P. S. P., Safai, P. D., Singh, G., and 15 Kapoor, R. K.: Spread of acid rain over India, Atmos. Environ., 23, 757–762, 1989.
 - Kulshrestha, U. C., Granat, L., Engardt, M., and Rodhe, H.: Review of precipitation monitoring studies in India -a search for regional patterns, Atmos. Environ., 39, 4419–4435, 2005.
 - Kulshrestha, U. C., Satyanarayana, J., Kulshrestha, M. J., and Rodhe, H.: International workshop on N deposition and critical loads, Edinburgh, UK, 16-18 November, 2009.

20

- Lenhard, V. and Gravenhorst, G.: Evaluation of ammonia of fluxes into the free atmosphere over Western Germany, Tellus, 328, 48-55, 1980.
 - Likens, G. E., Keene, W. C., Miller, J. M., and Galloway, J. N.: Chemistry of precipitation from a remote, terrestrial site, Austr. J. Geophys. Res., 92(D11), 13299–13314, 1987.
- Parashar, D. C., Granat, L., Kulshreshtha, U. C., Pillai, A. G., Naik, M. S., Momin, G. A., Rao, P. S. P., Safai, P. D., Khemani, L. T., Nagavi, S. W. A., Narverkar, P. V., Thapa, K. B., and Rodhe, H.: Report CM-90 September 1996, Department of meteorology Stockholm University International meteorological Institute in Stockholm (Sweden), 1996.
- Possanzini, M., Buttini, P., and Dipalo, V.: Characterization of a rural area in terms of dry and wet deposition, Sci. Total Environ., 74, 111–120, 1988. 30
 - Quinn, P. K., Charlson, R. J., and Bates, T. S.: Simultaneous observations of ammonia in the atmosphere and ocean. Nature, 335, 336-338, 1988.

Satyanarayana, J., Reddy, L. A. K., Kulshrestha, M. J., Rao, R. N., and Kulshrestha, U. C.:

Chemical composition of rain water and influence of airmass trajectories at a rural site in an ecological sensitive area of Western Ghats (India), J. Atmos. Chem., 66(3), 101–116, doi:10.1007/s10874-011-9193-2, 2010.

Singh, S. P., Satsangi, G. S., Khare, P., Lakhani, A., Maharaj Kumari, K., and Srivastava, S. S.: Multiphase measurement of atmospheric ammonia, Chemosphere, 3, 107–116, 2001.

- Multiphase measurement of atmospheric ammonia, Chemosphere, 3, 107–116, 2001.
 Sutton, M. A., Lee, D. S., Dollard, G. A., and Fowler, D.: Introduction atmospheric ammonia: emission, deposition and environmental impacts, Atmos. Environ., 32, 269–271, 1998.
 - Sutton, M. A., Reis, S., and Baker, S. M. H.: Chapter Introduction: Atmosperic Ammonia, Springer, 2009.
- ¹⁰ Tuncel, S. G. and Unger, S.: Rain water chemistry in Ankara Turkey, Atmos. Environ., 30(15), 2721–2727, 1996.

Vincent, K.: The temporal and special behavior of nitrogen containing aerosol and gases and the contribution to ammonium and nitrate in rain water, in: Int. Conf. Atmos. Ammonia, Culham, Oxford, 2–4 October, 1995.

Yamamota, N., Kabeya, N., Onodera, M., Takahahi, S., Komori, Y., Nakazuka, E., and Shirai, T.: Seasonal variation of atmospheric ammonia and particulate ammonium concentrations in the urban atmosphere of Yokohama over a 5-year period, Atmos. Environ., 22, 2621–2623, 1988.

Zutshi, P. K., Sequeira, R., Mahadevan, T. N., and Banerjee, T.: Environmental concentrations

of some of the major inorganic pollutants at the BARC site, Trombay, Indian J. Meteorol. Geophys., 21, 473–478, 1970.

iscuss	BC	BGD				
ion Pa	9, 191–2	9, 191–207, 2012				
iber Discussion	Gaseous Ammonia and Particulate Ammonium at Delhi S. Singh and U. C. Kulshrestha					
Paper	Title	Title Page				
-	Abstract	Introduction				
Discu	Conclusions	References				
Ission	Tables	Figures				
Pap	14	►I.				
	•	•				
	Back	Close				
iscussi	Full Screen / Esc					
on P	Printer-friendly Version					
aper	Interactive Discussion					

Discussion Pap		BGD 9, 191–207, 2012 Gaseous Ammonia and Particulate Ammonium at Delhi S. Singh and U. C. Kulshrestha		
aper Discussion Paper	and Partic Ammonium S. Singh			
Paper	Title Pa	Title Page		
	Abstract	ntroduction		
Disc	Conclusions	References		
Discussion Pap	Tables	Figures		
Pap	14	►I.		
0	•	•		
	Back	Close		
Discussion	Full Screen / Esc Printer-friendly Version			
Paper	Interactive Discussion			

 Table 1. Comparison of concentrations of gaseous ammonia with other studies.

Site	Characteristics of site	Concentration (μ g m ⁻³)	Reference
Mumbai	Urban	35.0	Zutshi et al. (1970)
Yokahama	Urban	5.3	Yamamota et al. (1988)
Delhi	Urban	32.6	Kapoor et al. (1992)
Pune	Urban	2.0	Khemani et al. (1987)
Beijing	Urban	22.26	lanniello et al. (2010)
Agra	Semi Urban	10.2	Singh et al. (2001)
Abbeville, LA, US	Rural	0.07	Cadle et al. (1982)
Richpur	Rural	0.9	Khemani et al. (1987)
Sinhagad (Rural)	Rural	0.	6 Khemani et al. (1987)
Pacific ocean	Marine	0.004	Quinn et al. (1988)
Arabian sea	Marine	1.6	Khemani et al. (1987)
Bay of Bengal	Marine	1.9	Khemani et al. (1987)
Delhi (Urban)		29.4	Present study

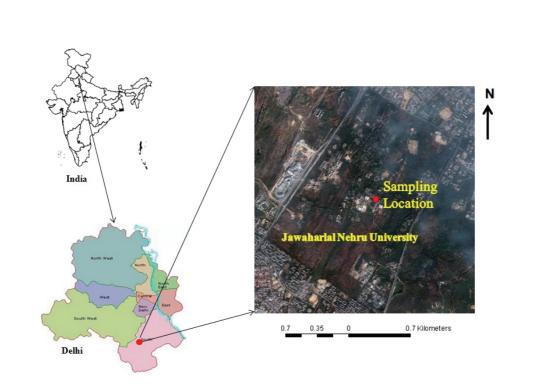
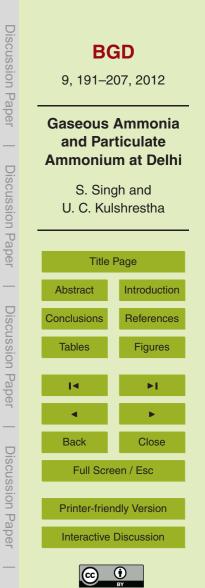



Fig. 1. Map showing sampling site and surroundings.

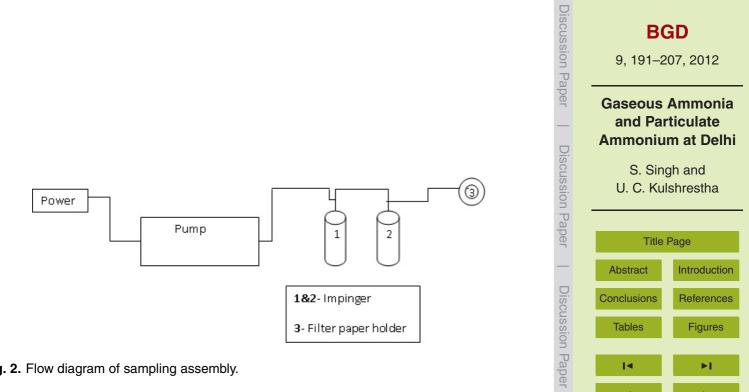
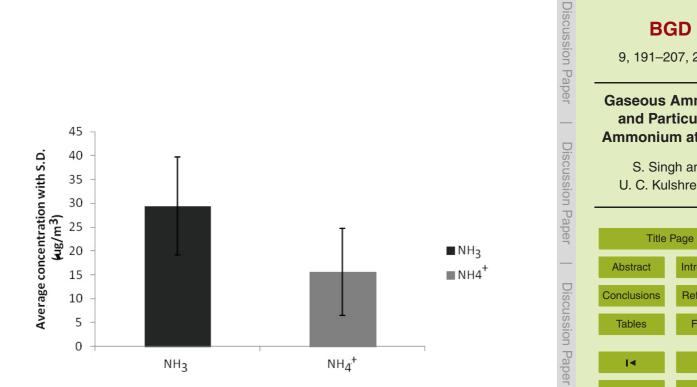


Fig. 2. Flow diagram of sampling assembly.

Full Screen / Esc

Printer-friendly Version


Interactive Discussion

<

Back

Discussion Paper

Close

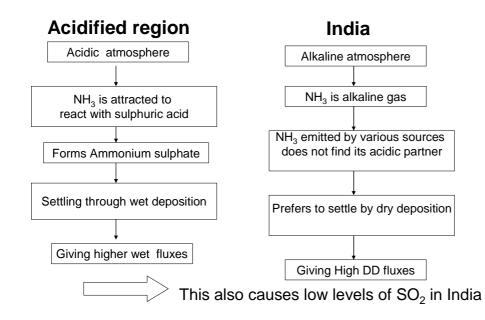


Fig. 3. Average concentration of gaseous NH_3 and particulate NH_4^+ . Error bar shows standard deviation (S.D.).

Discussion Paper

How alkaline dust is responsible for higher NH₃

Fig. 4. Flow chart showing reason for higher NH_3 in Indian region.

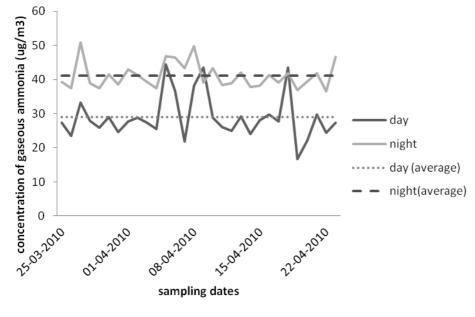
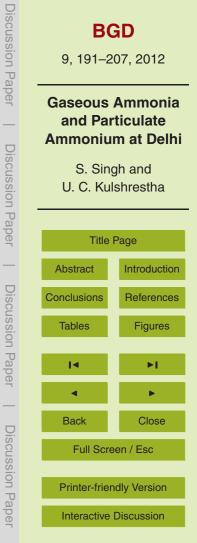



Fig. 5. Average diurnal variation of NH_3 .

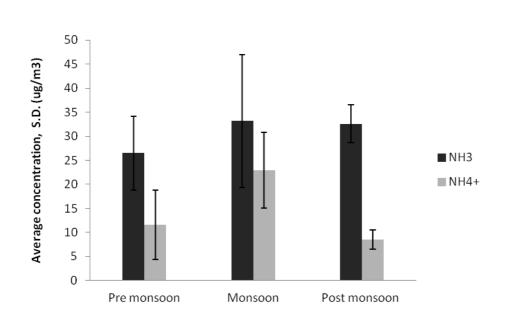



Fig. 6. Average concentration and standard deviation (S.D.) of gaseous NH_3 and particulate NH_4^+ during different seasons.

